587 research outputs found

    Active Brownian Motion Tunable by Light

    Get PDF
    Active Brownian particles are capable of taking up energy from their environment and converting it into directed motion; examples range from chemotactic cells and bacteria to artificial micro-swimmers. We have recently demonstrated that Janus particles, i.e. gold-capped colloidal spheres, suspended in a critical binary liquid mixture perform active Brownian motion when illuminated by light. In this article, we investigate in some more details their swimming mechanism leading to active Brownian motion. We show that the illumination-borne heating induces a local asymmetric demixing of the binary mixture generating a spatial chemical concentration gradient, which is responsible for the particle's self-diffusiophoretic motion. We study this effect as a function of the functionalization of the gold cap, the particle size and the illumination intensity: the functionalization determines what component of the binary mixture is preferentially adsorbed at the cap and the swimming direction (towards or away from the cap); the particle size determines the rotational diffusion and, therefore, the random reorientation of the particle; and the intensity tunes the strength of the heating and, therefore, of the motion. Finally, we harness this dependence of the swimming strength on the illumination intensity to investigate the behaviour of a micro-swimmer in a spatial light gradient, where its swimming properties are space-dependent

    Dynamics of conversion of supercurrents into normal currents, and vice versa

    Full text link
    The generation and destruction of the supercurrent in a superconductor (S) between two resistive normal (N) current leads connected to a current source is computed from the source equation for the supercurrent density. This equation relates the gradient of the pair potential's phase to electron and hole wavepackets that create and destroy Cooper pairs in the N/S interfaces. Total Andreev reflection and supercurrent transmission of electrons and holes are coupled together by the phase rigidity of the non-bosonic Cooper-pair condensate. The calculations are illustrated by snapshots from a computer film.Comment: 8 pages, 1 figure, accepted by Phys. Rev.

    Effects of an Integrative Mind-Body-Medicine Group Program on Breast Cancer Patients During Chemotherapy: An Observational Study.

    Full text link
    Background: Breast cancer is one of the leading cancers in women in the Western world. Cancer treatment, especially chemotherapy, is often associated with physical and psychosocial side effects. Objective: To improve the quality of life and manage side effects, a new integrative mind-body-medicine group concept for breast cancer patients receiving chemotherapy was developed and pilot tested. Methods: Breast cancer patients participated in a 66 hours mind-body-medicine group program tailored to the needs of cancer patients during chemotherapy. The program was integrated into standard care encompassing mindfulness training, yoga, moderate exercise, nutrition, complementary self-help strategies, cognitive restructuring, and acupuncture. Quality of life (EORTC QLQ-C30), depression and anxiety (HADS), stress (PSS-10), and fatigue (BFI) were assessed before and after the program, as well as satisfaction and safety. Analyses were carried out on exploratory basis with paired samples t-tests. Results: Fifty-seven female patients, aged 51.3±10.5 years, with breast cancer diagnoses were enrolled. After completing the program, global EORTC quality of life was improved (D=9.5; 95%-CI=[2.9|16.1]; p=.005), although the EORTC-symptom scales assessing fatigue (D=9.9; 95%-CI=[1|18.8]; p=.030), nausea (D=7.1; 95%- CI=[0.6|13.6]; p=.031), and dyspnea (D=12.5; 95%-CI=[2.9|22.1]; p=.011) were found to be increased. Stress (D=-3.5; 95%-CI=[-5|-2.1]; p=.000), anxiety (D=-3.8; 95%-CI=[-4.9|-2.7]; p=.000) and depression (D=-3.9; 95%-CI=[-4.9|-2.8]; p=.000) were also found to be significantly reduced. Regarding the severity of (D=0.2; 95%- CI=[-0.8|0.5]; p=.644) and the impairment due to fatigue (D=0.1; 95%-CI=[-0.8|0.6]; p=.696), no significant worsening was observed. Patients were satisfied with the program. No serious adverse events were reported. Conclusion: Breast cancer patients benefit from an integrative mind-body-medicine group program during chemotherapy regarding the quality of life and psychological symptoms. Randomized controlled trials are warranted

    Gaussian Wavefunctional Approach in Thermofield Dynamics

    Full text link
    The Gaussian wavefunctional approach is developed in thermofield dynamics. We manufacture thermal vacuum wavefunctional, its creation as well as annihilation operators,and accordingly thermo-particle excited states. For a (D+1)-dimensional scalar field system with an arbitrary potential whose Fourier representation exists in a sense of tempered distributions, we calculate the finite temperature Gaussian effective potential (FTGEP), one- and two-thermo-particle-state energies. The zero-temperature limit of each of them is just the corresponding result in quantum field theory, and the FTGEP can lead to the same one of each of some concrete models as calculated by the imaginary time Green function.Comment: the revised version of hep-th/9807025, with one equation being added, a few sentences rewritten, and some spelling mistakes corrected. 7 page, Revtex, no figur

    Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach

    Get PDF
    Renormalization of Hamiltonian field theory is usually a rather painful algebraic or numerical exercise. By combining a method based on the coupled cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian approach to renormalization, we show that a powerful and elegant method exist to solve such problems. The method is in principle non-perturbative, and is not necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear in JHE

    Ionic and electronic structure of sodium clusters up to N=59

    Get PDF
    We determined the ionic and electronic structure of sodium clusters with even electron numbers and 2 to 59 atoms in axially averaged and three-dimensional density functional calculations. A local, phenomenological pseudopotential that reproduces important bulk and atomic properties and facilitates structure calculations has been developed. Photoabsorption spectra have been calculated for Na2\mathrm{Na}_2, Na8\mathrm{Na}_8, and Na9+\mathrm{Na}_9^+ to Na59+\mathrm{Na}_{59}^+. The consistent inclusion of ionic structure considerably improves agreement with experiment. An icosahedral growth pattern is observed for Na19+\mathrm{Na}_{19}^+ to Na59+\mathrm{Na}_{59}^+. This finding is supported by photoabsorption data.Comment: To appear in Phys. Rev. B 62. Version with figures in better quality can be requested from the author

    Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach

    Full text link
    We present a method for computing optical absorption spectra by means of a Bethe-Salpeter equation approach, which is based on a conserving linear response calculation for electron-hole coherences in the presence of an external electromagnetic field. This procedure allows, in principle, for the determination of the electron-hole correlation function self-consistently with the corresponding single-particle Green function. We analyze the general approach for a "one-shot" calculation of the photoabsorption cross section of finite systems, and discuss the importance of scattering and dephasing contributions in this approach. We apply the method to the closed-shell clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure

    Structure and properties of small sodium clusters

    Get PDF
    We have investigated structure and properties of small metal clusters using all-electron ab initio theoretical methods based on the Hartree-Fock approximation and density functional theory, perturbation theory and compared results of our calculations with the available experimental data and the results of other theoretical works. We have systematically calculated the optimized geometries of neutral and singly charged sodium clusters having up to 20 atoms, their multipole moments (dipole and quadrupole), static polarizabilities, binding energies per atom, ionization potentials and frequencies of normal vibration modes. Our calculations demonstrate the great role of many-electron correlations in the formation of electronic and ionic structure of small metal clusters and form a good basis for further detailed study of their dynamic properties, as well as structure and properties of other atomic cluster systems.Comment: 47 pages, 16 figure

    A Self-Consistent Microscopic Theory of Surface Superconductivity

    Full text link
    The electronic structure of the superconducting surface sheath in a type-II superconductor in magnetic fields Hc2<H<Hc3H_{c2}<H<H_{c3} is calculated self-consistently using the Bogoliubov-de Gennes equations. We find that the pair potential Δ(x)\Delta(x) exhibits pronounced Friedel oscillations near the surface, in marked contrast with the results of Ginzburg-Landau theory. The role of magnetic edge states is emphasized. The local density of states near the surface shows a significant depletion near the Fermi energy due to the development of local superconducting order. We suggest that this structure could be unveiled by scanning-tunneling microscopy studies performed near the edge of a superconducting sample.Comment: 12 pages, Revtex 3.0, 3 postscript figures appende

    Short-range and tensor correlations in the 16^{16}O(e,e'pn) reaction

    Get PDF
    The cross sections for electron induced two-nucleon knockout reactions are evaluated for the example of the 16^{16}O(e,e'pn)14^{14}N reaction leading to discrete states in the residual nucleus 14^{14}N. These calculations account for the effects of nucleon-nucleon correlations and include the contributions of two-body meson exchange currents as the pion seagull, pion in flight and the isobar current contribution. The effects of short-range as well as tensor correlations are calculated within the framework of the coupled cluster method employing the Argonne V14 potential as a model for a realistic nucleon-nucleon interaction. The relative importance of correlation effects as compared to the contribution of the meson exchange currents depends on the final state of the residual nucleus. The cross section leading to specific states, like e.g. the ground state of 14^{14}N, is rather sensitive to the details of the correlated wave function.Comment: 16 pages, 9 figures include
    corecore